
Xiangyang Ju, Steve Farrell

Exa-TrkX kick-off meeting, 4 June 2019

Recent HEP.TrkX results

Xiangyang Ju Exa-TrkX kick-off meeting 4 June, 2019

Introduction

 2

1. Recap the results presented at the 2019 Connecting The Dots
2. Recent results after that
3. Future plans

Xiangyang Ju Exa-TrkX kick-off meeting 4 June, 2019

Tracking ML challenge data

 3

[link to the website]

The data provides simulated hit
positions in the inner detector with
the geometry shown left, serving as a
starting point, but not representing
reality.

Figure 1: Top: A schematic depiction of the ITk Layout as presented in this document. Bottom: A zoomed-in view of
the pixel detector. In each case, only one quadrant and only active detector elements are shown. The active elements
of the strip detector are shown in blue, and those of the pixel detector are shown in red. The horizontal axis is along
the beam line with zero being the interaction point. The vertical axis is the radius measured from the interaction
region.

5

Latest layout of ATLAS Inner Tracker
(ITk) ATL-PHYS-PUB-2019-014
Sophisticated layout in pixel endcap.

Strip subsystem

Pixel subsystem

https://www.kaggle.com/c/trackml-particle-identification
http://cdsweb.cern.ch/record/2669540

Xiangyang Ju Exa-TrkX kick-off meeting 4 June, 2019

Start from small

 4

[Link to the talk]

Tackling the problem from a smaller dataset:
Hits recorded in volume [8, 13, 17], basically barrel region
Particles leaving fully connected tracks in the detector, i.e. no
missing hits

The data is to represent the HL-LHC
conditions with μ = 200.
One event has about 10k particles and
100k hits.
Out of the 10k particles, about 86% are
reconstructable, defined as particles
leaving hits in the detector

https://indico.cern.ch/event/742793/contributions/3274328/attachments/1822711/2981966/xju_gnn_tracking_ctd2019_v4.pdf

Xiangyang Ju Exa-TrkX kick-off meeting 4 June, 2019

Track formation

 5

of particles after stacked selections over the
total # of particles in the event

Pairs

Start with “Hits”

edge selection

Graphs

split into η φ regions

GNN + CTD

track candidates

Track candidates survive selections
only when they have the exact hits as true tracks

Xiangyang Ju Exa-TrkX kick-off meeting 4 June, 2019

Graph Formation: edge selection

 6

• Make initial edges from hits in adjacent layers
• Use a simple selection to prune away fake edges

Δφ/Δr < 0.0006,
z0 (intercept of the line passing through the two hits) < 100 mm

• Tuned to be efficient for tracks with pT > 1 GeV

Δφ/Δr [rad/mm] z0 [mm]

Xiangyang Ju Exa-TrkX kick-off meeting 4 June, 2019

Graph Formation: construct graph from pairs

 7

Graph	representation

• Connect	compatible	hits	together	to	construct	a	graph
• Learn	on	this	representation	with	Graph	Neural	Networks

2019-02-26 8• Construct a directed graph, flowing inside-out
Split into 16 subgraphs, 8 φ bins and 2 η bins
• need smart algorithm to deal with hits in boundaries
input node features: [r, φ, z]
Edges belong to a track assigned with score of 1, 0 otherwise

Xiangyang Ju Exa-TrkX kick-off meeting 4 June, 2019

Graph for one event

 8

• About 160k edges, 92% are
fake (in gray)

• 8 gaps result from 8
sections in φ

• Can GNN find the 13k true
edges out of the 147k fake
ones?

After all previous selections

Xiangyang Ju Exa-TrkX kick-off meeting 4 June, 2019

GNN Architecture

 9

Graph	network	architecture

2019-02-26 12

Two	components	operate	on	graph:

• Edge	network	computes	edge	
scores	from	node	features

• Node	network	computes	new	node	
features from	edge-weighted
aggregated	neighbor	node	features

Three components operate on graph:
• Input network computes hidden node

features

• Edge network computes edge scores
from node features

• Node network computes hidden node
features from aggregated weighted
incoming and outgoing node features

Incoming and outgoing nodes with higher weights get more “attention”

Xiangyang Ju Exa-TrkX kick-off meeting 4 June, 2019

Putting them together

 10

• EdgeNet and NodeNet iteratively applied 8 times, so 8 iterations

• Message passed with the “attention mechanism”

• Hidden node features carry embedded track information for Edge
Network to make predictions

Putting	it	together

• Edge	and	node	networks	applied	in	recurrent,	alternating	fashion
• With	each	“layer”,	the	model	propagates	and	accumulates	information	

through	the	graph,	strengthening/pruning	connections	adaptively

• A	Recurrent	Graph	Neural	Network	with	Attention
• Application-specific	output
• Hit	classifier:	binary	node	classifier	output	layer
• Segment	classifier:	final	application	of	EdgeNetwork for	edge	scores

2019-02-26 13
Code:	https://github.com/HEPTrkX/heptrkx-gnn-tracking

[H0, X] [w0] [H1, X] [w1] [Hi, X] [wi]

H: hidden states/features, X: input node features

Xiangyang Ju Exa-TrkX kick-off meeting 4 June, 2019

GNN Output and performance

 11

With a threshold of 0.7:
Edge Efficiency: 95.2%
Edge Purity: 90.2%

• ~43k tunable parameters in pytorch
• Trained on NVIDIA V100 ‘Volta’ GPU for about 60 epochs
• Weighted loss function

• One can use higher threshold
to gain purity at the cost of less
efficiency.

where ✓ is a nuisance parameter that scales the deviation of the surrogate
function �f , which is defined as:

�2
f = J⌃JT

where J is the Jacobian matrix of f and ⌃ is the convariance-matrix of A
estimated in previous section.

5 Tuning with constraints on generate pa-
rameters

�2 =
nX

i

[di � f(p0 + �p, xi)]2

�2
di

+ (
�p

�p
)2

�2 =
nX

i

[di � f(p0 + �p, xi) · (1 + ✓i · �fi)]
2

�2
di

+
X

i

✓2i + (
�p

�p
)2

�2 =
nX

i

[di � f(p0 + �p, xi)]2

�2
di
+ �2

fi

�2 =
nX

i

[di � f(p0 + �p, xi)]2

�2
di
+ �2

fi

+ (
�p

�p
)2

�2 =
nX

i

[di(xi)� f(p, xi) ·
Qm

j (1 + ✓j · �fi)]
2

�2
di

+
mX

j

✓2j (5)

�2 =
nX

i

[di(xi)� f(p, xi)]2

�2
di
+ �2

fi

(6)

E�ciency =
of True Edges passed the threshold

of True Edges

Purity =
of True Edges passed the threshold

of total Edges passed the threshold

4

where ✓ is a nuisance parameter that scales the deviation of the surrogate
function �f , which is defined as:

�2
f = J⌃JT

where J is the Jacobian matrix of f and ⌃ is the convariance-matrix of A
estimated in previous section.

5 Tuning with constraints on generate pa-
rameters

�2 =
nX

i

[di � f(p0 + �p, xi)]2

�2
di

+ (
�p

�p
)2

�2 =
nX

i

[di � f(p0 + �p, xi) · (1 + ✓i · �fi)]
2

�2
di

+
X

i

✓2i + (
�p

�p
)2

�2 =
nX

i

[di � f(p0 + �p, xi)]2

�2
di
+ �2

fi

�2 =
nX

i

[di � f(p0 + �p, xi)]2

�2
di
+ �2

fi

+ (
�p

�p
)2

�2 =
nX

i

[di(xi)� f(p, xi) ·
Qm

j (1 + ✓j · �fi)]
2

�2
di

+
mX

j

✓2j (5)

�2 =
nX

i

[di(xi)� f(p, xi)]2

�2
di
+ �2

fi

(6)

E�ciency =
of True Edges passed the threshold

of total True Edges

Purity =
of True Edges passed the threshold

of total Edges passed the threshold

4

https://www.nvidia.com/en-us/data-center/tesla-v100/

Xiangyang Ju Exa-TrkX kick-off meeting 4 June, 2019 12

We are exploring other GNN architectures
to push the performance further.

Following example uses graph_nets library
from DeepMind and a model resembling the
Interaction Networks [link]

https://arxiv.org/abs/1806.01261

Xiangyang Ju Exa-TrkX kick-off meeting 4 June, 2019

Alternative implementation of GNN

 13

Differences:

• Edge features provided in the input

• Alternate message passing implementation:
No explicit attention mechanism
Edge features are computed from node features and then summed
across all neighbors

• Output Network computes final edge scores

• Bigger, deeper model (266k parameters)
We can visualize the intermediate outputs of the model

Putting	it	together

• Edge	and	node	networks	applied	in	recurrent,	alternating	fashion
• With	each	“layer”,	the	model	propagates	and	accumulates	information	

through	the	graph,	strengthening/pruning	connections	adaptively

• A	Recurrent	Graph	Neural	Network	with	Attention
• Application-specific	output
• Hit	classifier:	binary	node	classifier	output	layer
• Segment	classifier:	final	application	of	EdgeNetwork for	edge	scores

2019-02-26 13
Code:	https://github.com/HEPTrkX/heptrkx-gnn-tracking

Input
Network

Graph
Network

[H0, H0]
Putting	it	together

• Edge	and	node	networks	applied	in	recurrent,	alternating	fashion
• With	each	“layer”,	the	model	propagates	and	accumulates	information	

through	the	graph,	strengthening/pruning	connections	adaptively

• A	Recurrent	Graph	Neural	Network	with	Attention
• Application-specific	output
• Hit	classifier:	binary	node	classifier	output	layer
• Segment	classifier:	final	application	of	EdgeNetwork for	edge	scores

2019-02-26 13
Code:	https://github.com/HEPTrkX/heptrkx-gnn-tracking

[H1, H0]
Graph

Network
Output

Network

[Hi]

Xiangyang Ju Exa-TrkX kick-off meeting 4 June, 2019

Predicted score improves after each iteration

 14

1

Edges with higher scores are darker than that with lower scores
Edges with scores < 0.01 are removed for visualization purpose.

Xiangyang Ju Exa-TrkX kick-off meeting 4 June, 2019

Predicted score improves after each iteration

 15

2

Edges with higher scores are darker than that with lower scores
Edges with scores < 0.01 are removed for visualization purpose.

Xiangyang Ju Exa-TrkX kick-off meeting 4 June, 2019

Predicted score improves after each iteration

 16

3

Edges with higher scores are darker than that with lower scores
Edges with scores < 0.01 are removed for visualization purpose.

Xiangyang Ju Exa-TrkX kick-off meeting 4 June, 2019

Predicted score improves after each iteration

 17

4

Edges with higher scores are darker than that with lower scores
Edges with scores < 0.01 are removed for visualization purpose.

Xiangyang Ju Exa-TrkX kick-off meeting 4 June, 2019

Predicted score improves after each iteration

 18

5

Edges with higher scores are darker than that with lower scores
Edges with scores < 0.01 are removed for visualization purpose.

Xiangyang Ju Exa-TrkX kick-off meeting 4 June, 2019

Predicted score improves after each iteration

 19

6

Edges with higher scores are darker than that with lower scores
Edges with scores < 0.01 are removed for visualization purpose.

Xiangyang Ju Exa-TrkX kick-off meeting 4 June, 2019

Predicted score improves after each iteration

 20

7

Edges with higher scores are darker than that with lower scores
Edges with scores < 0.01 are removed for visualization purpose.

Xiangyang Ju Exa-TrkX kick-off meeting 4 June, 2019

Predicted score improves after each iteration

 21

8

Edges with higher scores are darker than that with lower scores
Edges with scores < 0.01 are removed for visualization purpose.

Xiangyang Ju Exa-TrkX kick-off meeting 4 June, 2019

Performances

 22

• ~266k tunable parameters in TensorFlow
• Trained on a GPU for about 2 epochs
• Weighted loss function

where ✓ is a nuisance parameter that scales the deviation of the surrogate
function �f , which is defined as:

�2
f = J⌃JT

where J is the Jacobian matrix of f and ⌃ is the convariance-matrix of A
estimated in previous section.

5 Tuning with constraints on generate pa-
rameters

�2 =
nX

i

[di � f(p0 + �p, xi)]2

�2
di

+ (
�p

�p
)2

�2 =
nX

i

[di � f(p0 + �p, xi) · (1 + ✓i · �fi)]
2

�2
di

+
X

i

✓2i + (
�p

�p
)2

�2 =
nX

i

[di � f(p0 + �p, xi)]2

�2
di
+ �2

fi

�2 =
nX

i

[di � f(p0 + �p, xi)]2

�2
di
+ �2

fi

+ (
�p

�p
)2

�2 =
nX

i

[di(xi)� f(p, xi) ·
Qm

j (1 + ✓j · �fi)]
2

�2
di

+
mX

j

✓2j (5)

�2 =
nX

i

[di(xi)� f(p, xi)]2

�2
di
+ �2

fi

(6)

E�ciency =
of True Edges passed the threshold

of True Edges

Purity =
of True Edges passed the threshold

of total Edges passed the threshold

4

where ✓ is a nuisance parameter that scales the deviation of the surrogate
function �f , which is defined as:

�2
f = J⌃JT

where J is the Jacobian matrix of f and ⌃ is the convariance-matrix of A
estimated in previous section.

5 Tuning with constraints on generate pa-
rameters

�2 =
nX

i

[di � f(p0 + �p, xi)]2

�2
di

+ (
�p

�p
)2

�2 =
nX

i

[di � f(p0 + �p, xi) · (1 + ✓i · �fi)]
2

�2
di

+
X

i

✓2i + (
�p

�p
)2

�2 =
nX

i

[di � f(p0 + �p, xi)]2

�2
di
+ �2

fi

�2 =
nX

i

[di � f(p0 + �p, xi)]2

�2
di
+ �2

fi

+ (
�p

�p
)2

�2 =
nX

i

[di(xi)� f(p, xi) ·
Qm

j (1 + ✓j · �fi)]
2

�2
di

+
mX

j

✓2j (5)

�2 =
nX

i

[di(xi)� f(p, xi)]2

�2
di
+ �2

fi

(6)

E�ciency =
of True Edges passed the threshold

of total True Edges

Purity =
of True Edges passed the threshold

of total Edges passed the threshold

4

Threshold 0.1 0.5 0.8

Edge
Efficiency 98.2% 95.9% 93.0%

Edge
Purity 84.0% 95.7% 98.9%

Xiangyang Ju Exa-TrkX kick-off meeting 4 June, 2019

Connect The Dots, a simple algorithm

 23

• Longest path is selected for the starting hit, then go to next not-used hit.
• Each hit is assigned to one track.

We will lift the constraint to gain efficiency and robustness, and then
resolve ambiguities.

Guided by edge scores from GNN, we walk
through the graph from inside to outside along
edges with the maximum score that is > 0.1, as
ones < 0.1 having high probability being fake

Add paths with scores > 0.8 → having high
probability being true

Xiangyang Ju Exa-TrkX kick-off meeting 4 June, 2019

A summary

 24

GNN edge classifier achieves over 95% efficiency across the pT range
with a purity greater than 95%

one-event N-particles ratio w.r.t Total ratio w.r.t
Reconstructable relative ratio

Total 11170 100% 100%

Reconstructable 9635 86% 100% 86%

Barrel 7492 67% 78% 78%

No-missing hits 6600 59% 69% 88%

Edge selection 3114 28% 32% 47%

Split graph 2668 24% 28% 86%

GNN 2590 23% 27% 97%

Xiangyang Ju Exa-TrkX kick-off meeting 4 June, 2019

Edge selections

 25

• Current selections tuned to be efficiency for tracks with pT > 1 GeV in barrel.
Not tested in endcap (probability need tuning)

• Explore simple neutral networks to do the job:
No need of engineering variables
Applicable to all hits pairing (barrel and endcap)
Can easily use GPU and be parallelized.

Build 90 promising layer-pairs,
each having a Neutral Network to
select the right pairs.

Xiangyang Ju Exa-TrkX kick-off meeting 4 June, 2019

Neural Network input variables

 26

• Hit Location variables: x, y, z
• Cluster Info: x, y, z

x-y-z on the module:
• x = (max(ch0) - min(ch0)) *pitch_x;
• y = (max(ch1) - min(ch1)) * pitch_y;
• z = module_width

local x-y-z —> global x-y-z
• Use rotation-matrix and translation vector

• In total 12 input variables.
Noise hits and duplicated hits are used as well.

Xiangyang Ju Exa-TrkX kick-off meeting 4 June, 2019

Neural network performance

 27

Most Lay-pairs achieve
> 90% efficiency at the cost
of purity ~0.1%.

Can perform fine-tuning for
these handful worse-
performed NNs

Will proceed to construct
the graph for all events.

Xiangyang Ju Exa-TrkX kick-off meeting 4 June, 2019

Short-term focus

 28

1. Complete full event process (including endcap and noise hits)
using the NNs + GNN + CTD.

2. Deal with unknown missing hits and duplicated hits
1. Join the efforts from traditional algorithms

3. Scale GNN model:
1. GNN normally does not have good scaleability;
2. Active research efforts from machine learning

